
An Introduction to
Reinforcement
Learning and the
AlphaZero AI
James Frost

Data Platform Director

Quorum

About the speaker

ÅJames Frost

ÅData Platform Director at Quorum, an Edinburgh based IT consultancy

ÅRecently completed an MSc in Data Science at Dundee University

ÅFinal year project was to build a backgammon AI influenced by techniques based on
DeepMind AlphaGo. This AI achieved human Grandmaster level.

Session agenda

ÅAn introduction to reinforcement learning concepts

ÅMonte-Carlo learning

ÅNeural networks as function approximators

ÅIssues with reinforcement learning and Deep Neural Networks

ÅDeepMind and AlphaGo

What is reinforcement learning?

Types of Machine Learning

Supervised
Learning

Reinforcement
Learning

Unsupervised
Learning

Supervised Learning:

Starts with a dataset of known examples.
¢ƘŜ ŜƴƎƛƴŜ ǘƘŜƴ ǘǊŀƛƴǎ άōȅ ŜȄŀƳǇƭŜέΦ

ά!έ ƛǎ ŦƻǊ !ǇǇƭŜΧ

Χ ƴƻǘ ŀƴ ŀǇǇƭŜΗ

Types of Machine Learning

Supervised
Learning

Reinforcement
Learning

Unsupervised
Learning

Unsupervised Learning:

Starts with a dataset where the categories might not be
known and looks for patterns / similarities / clusters which
may be of interest.

For example, customer segmentation or fraud investigation

Types of Machine Learning

Supervised
Learning

Reinforcement
Learning

Unsupervised
Learning

Reinforcement Learning:

Is based on an agent interacting with the environment, and
getting feedback in the form of a reward mechanism.

How do dogs learn?

All training should be reward based. Giving your dog something they really
like such as food, toys or praise when they show a particular behaviour
means that they are more likely to do it again.

RSPCA Website

Principles of reinforcement learning

Agent

Environment

action
At

reward
Rt

state
St+1

Rewards

ÅA reward Rt is a scalar feedback signal

ÅIndicates the value of carrying out step t

Money won or lost ς
e.g. poker or stock market

Win (+1) or Loss (-1)

Kill John Connor (+10,000)
Getting to destination (+100)
Falling over (-50)
Taking a step (-1)

Agent

The Agent generally has the following components:

ÅModel ςthe agents representation of the environment

ÅPolicy ςhow the agent behaves

ÅValue function ςestimate of how good a state or
action is

Model

ÅEnvironment state is the environments private representation

ÅOften not visible

ÅModel is a representation of the environment state through observation

Value Functions

Almost all reinforcement learning algorithms involve estimating value
functions that estimate how good it is for the agent to be in a given state

ΧǘƘŜ Ƴƻǎǘ ƛƳǇƻǊǘŀƴǘ ŎƻƳǇƻƴŜƴǘ ƻŦ ŀƭƳƻǎǘ ŀƭƭ ǊŜƛƴŦƻǊŎŜƳŜƴǘ ƭŜŀǊƴƛƴƎ
algorithms we consider is a method for efficiently estimating values

(Sutton, 2017)

Value Functions / Policy - chess

A sample value function for chess might be the estimated chance of winning
from that position.

Chess Policy
From each state, calculate all legal moves
For each possible move, move to state
with highest value function.

OR from each state pick the move with the
highest action value.

This is the optimal policy.

Principles of reinforcement learning

1. Accurately estimating the value function is critical for reinforcement
learning

But how do we do that?

Technique 1 ςMonte Carlo Learning

ÅPlay a large number of games at random.

ÅRecord how many times each state is seen, and how many games were won from
that state (or action). This lets us know the estimated value function.

ÅThis is the evaluation step for the random policy

X O

X

O

41% win rate from here

Action values State values

-0.41 -0.54 -0.41

-0.54 X -0.54

-0.41 -0.54 -0.41

0.32 0.19 0.32

0.19 0.48 0.19

0.32 0.19 0.32

Now use Monte-Carlo Control

Åbƻǿ Ǉƭŀȅ ŀƴƻǘƘŜǊ ōǳƴŎƘ ƻŦ ƎŀƳŜǎΣ ōǳǘ ǘƘƛǎ ǘƛƳŜ ŀŎǘ άƎǊŜŜŘƛƭȅέ ǿƛǘƘ ǊŜǎǇŜŎǘ
of the value predicted by the previous policy.

ÅRecord how many times each state is seen, and how many games were won
from that state

100% win rate from here

X O

X

O

-0.14 -0.82 -0.14

-0.82 X -0.82

-0.14 -0.82 -0.14

0.07 0.08 0.07

0.08 0.20 0.08

0.07 0.08 0.07

5ƻƴΩǘ ƎŜǘ ǘƻƻ ƎǊŜŜŘȅΧ

ÅHowever, by only picking the best moves (greedy) we sometimes miss
possible moves that might be better.

ÅSo need to introduce an element of exploration.

Åʁ-greedy learning works as follows:

ÅWith probability (1-)ʁ make a greedy move
ÅWith probability ʁ move at random.

Åʁ is often reduced as the number of episodes increases ςthis is guaranteed
to converge to the optimal policy.

Learning cycle

ÅPolicy evaluation / policy improvement is the core concept of
reinforcement learning

ÅBy acting greedily with respect to the value function we can create a new,
improved policy.

ÅIterating this process will trend towards the optimal policy

Optimal policy
Policy
evaluation

Policy
improvement

Problems with large state spaces

Neural Networks

¦ƴŦƻǊǘǳƴŀǘŜƭȅ Ƴƻǎǘ ǳǎŜŦǳƭ ǇǊƻōƭŜƳǎ ŎŀƴΩǘ ǎǘƻǊŜ ǘƘŜ ǎǘŀǘŜ ŦƻǊ ŜǾŜǊȅ ǎŎŜƴŀǊƛƻΦ

ÅChess has 10^47 states

ÅGo has 10^170 states.

ÅHow many states to record every possible scenario for a driverless car or
Terminator robot?

So we need some form of function approximator.

Neural networks as value approximators

-4

-1

-1 6

5 2

-1 6

2

-3

Input Layer ɴᴙĭ Hidden Layer ɴᴙĭĮ Hidden Layer ɴᴙĭ Output Layer ɴᴙĭ

-4

0

0

0

0

0

0

-3

.

.

.

.

.

.

Monte-Carlo Learning and Neural Networks

ÅSame principles as tic-tac-toe

ÅPlay a number of games at random

ÅSample states (or state / action pairs) from the games, the reward that
these states led to, discounted by the number of steps

ÅUse these samples to feed into the neural network for training

ÅNow repeat the process, but instead of random play, use the neural
network to predict the best moves. Pick some moves at random (-ʁgreedy)

Deep Neural Networks as Value Functions

Deep Neural Networks (DNNs) would appear to be a great candidate for a
value function approximator. However, these can suffer from the following
causes of instability:

Åcorrelations present in the sequence of observations

Åsmall updates to action-values estimates (Q) may significantly change the
policy

Atari

ÅDeepmindpaper from 2015

ÅTaught a deep neural network to play Atari games, such as Breakout and
Kung Fu Master

ÅAchieved above human level in over half of the games ςin some cases
superhuman performance (e.g. Breakout).

ÅThe network was trained using a technique based on Q-learning

but introduced two important concepts:
ÅExperience replay

ÅTarget Q network

https://youtu.be/TmPfTpjtdgg

Source: Human-level control through deep reinforcement learning. Nature, 518. https://doi.org/10.1038/nature14236

Experience Replay and target Q network

Agent

Environment

action
At

reward Rt state
St+1

(St, At ,Rt St+1), (St-1, At-1 ,Rt-1 St), (St-2, At-2 ,Rt-2 St-1), (St-3, At-3 ,Rt-3 St-2), (St-4, At-4 ,Rt-4 St-3), (St-5, At-5 ,Rt-5 St-4)

Replay Buffer

Random samples
To learn new policy

Agent v2

Effect of Target Q and Experience Replay

AlphaGo

AlphaGo

ÅInitially trained on a database of expert human games

ÅThen self play

ÅAfter months of training beat Lee Sedol

ÅAlphaGoZerowas trained from completely random play

ÅWithin 36 hours of training AlphaZero beat AlphaGoLee100-0

άEach time you put knowledge into a system you
are actually handicapping itέ

David Silver (Silver, 2015)

AlphaGoZero

5ŜŜǇaƛƴŘΩǎ AlphaGoZeroproject applied the following principles

Åonly uses the raw board position as input features

Åuse a simple Monte-Carlo Tree Search (MCTS) to evaluate positions and
sample moves

Åresidual neural network architecture

Ådual-headed network

Monte-Carlo tree search

Source: Mastering the game of Go without human knowledge. https://doi.org/doi:10.1038/nature24270

